Stepik, Максим Дуплей — Погружение в Data Science и машинное обучение (2024) бесплатно

Ответить на тему
 
Автор Сообщение

Prescious ®

[Stepik] Максим Дуплей — Погружение в Data Science и машинное обучение (2024)
Чему вы научитесь:
  • Программировать на Python с нуля
  • Использовать популярные библиотеки Pandas и Scikit-learn
  • Обучать модели машинного обучения
  • Визуализировать результаты при помощи Matplotlib и Seaborn
  • Разбираться в метриках для оценки результата
  • Интерпретировать результат моделей ML
Data Science - это популярная предметная область, которая занимает одну из лидирующих позиций среди других областей в ИТ.
Специалисты, которые занимаются анализом данных и машинным обучением очень востребованы во многих странах мира, в том числе и в России.
В дальнейшем эта сфера будет еще больше развиваться, так как многие компании понимают, что именно Data Scientist может привнести огромный вклад в развитие компании, который выражается также в денежном эквиваленте.
Этот курс не перегружен математическими формулами и выводами, задача познакомиться с областью, научиться практическим навыкам, а также сформировать целостную картинку о грамотном и поэтапном обучении моделей.
Курс состоит из 4 основных блоков, где в каждом блоке предусмотрены уроки и соответствующие шаги с теорией и практикой:
1. Введение
Вы сможете узнать, что такое Data Science, чем данная область отличается от Machine Learning, а также чем занимаются специалисты в этих направлениях науки.
Познакомитесь с инструментом для анализа данных Python, а также средой разработки Jupyter Notebook.
Попробуем с вами установить их для дальнейшей полноценной работы.
2. Основы Python
В этом блоке вы сможете с нуля познакомиться с языком программирования Python: переменные, типы данных, функции, ООП. Набора перечисленных тем для начального этапа хватит для изучения и применения моделей машинного обучения.
Также вас ждут практические задания, где вы сможете отточить свои навыки программирования.
3. Библиотеки для визуализации и анализа данных
Вы познакомитесь с необходимыми инструментами, которые полезны в предварительном анализе данных, перед тем как будем обучать модель.
Это популярная библиотека Pandas для работы с табличными данными, Matplotlib и Seaborn - библиотеки для визуализации данных и результатов, в том числе обучения моделей.
4. Машинное обучение
В этом блоке мы познакомимся с моделями машинного обучения: как они работают, в какой ситуации какую модели применять.
Также разберем библиотеку Scikit-learn, где уже реализовано большинство ML моделей.
Научимся поэтапно выполнять предобработку данных, обучать модели, а также интерпретировать их результат.
Продажник:
https://stepik.org/course/205756/promo
↓ Скачать: ↓
Слив складчины:

Чтобы скачать файл "Stepik, Максим Дуплей — Погружение в Data Science и машинное обучение (2024)"

Вам нужно Авторизоваться на сайте под своим логином. Если у Вы ещё не зарегистрированы, тогда Вам нужно пройти Регистрацию


Показать сообщения:    
Ответить на тему

Скачать Stepik, Максим Дуплей — Погружение в Data Science и машинное обучение (2024) слив курса.

Текущее время: Сегодня 09:45

Часовой пояс: GMT + 4



Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете голосовать в опросах
Вы не можете прикреплять файлы к сообщениям
Вы не можете скачивать файлы